Publications¶
J. Atkinson, A. Elafrou, E. Kasoar, J. G. Wallwork, T. Meltzer, S. Clifford, C. Edsall, and D. Orchard. FTorch: a library for coupling PyTorch models to Fortran. Journal of Open Source Software, 10(107):7602, 2025. doi:10.21105/joss.07602.
M. C. A. Clare, J. G. Wallwork, S. C. Kramer, H. Weller, C. J. Cotter, and M. D. Piggott. Multi-scale hydro-morphodynamic modelling using mesh movement methods. GEM-International Journal on Geomathematics, 13(1):1–39, 2022. doi:10.1007/s13137-021-00191-1.
D. Dundovic, J. G. Wallwork, S. C. Kramer, F. Gillet-Chaulet, R. Hock, and M. D. Piggott. Anisotropic metric-based mesh adaptation for ice flow modelling in Firedrake. EGUsphere (under review), 2024:1–30, 2024. doi:10.5194/egusphere-2024-2649.
T. Kärnä, J. G. Wallwork, and S. C. Kramer. Adjoint-based optimization of a regional water elevation model. Journal of Advances in Modeling Earth Systems, 15(10):e2022MS003169, 2023. doi:10.1029/2022MS003169.
S. Li, E. Johnson, J. G. Wallwork, S. C. Kramer, and M. D. Piggott. Machine learning assisted mesh adaptation for geophysical fluid dynamics. In 11th International Conference on Adaptive Modeling and Simulation. 2023. doi:10.23967/admos.2023.051.
W. Song, M. Zhang, J. G. Wallwork, J. Gao, Z. Tian, F. Sun, M. D. Piggott, J. Chen, Z. Shi, X. Chen, and J. Wang. M2N: mesh movement networks for PDE solvers. Advances in Neural Information Processing Systems, 35:7199–7210, 2022. URL: https://proceedings.neurips.cc/paper_files/paper/2022/file/2f88d8061f12abae9d14d376fd69c933-Paper-Conference.pdf.
J. G. Wallwork. Mesh adaptation and adjoint methods for finite element coastal ocean modelling. PhD thesis, Imperial College London, 2021. doi:10.25560/92820.
J. G. Wallwork, A. Angeloudis, N. Barral, L. Mackie, S. C. Kramer, and M. D. Piggott. Tidal turbine array modelling using goal-oriented mesh adaptation. Journal of Ocean Engineering and Marine Energy, 2023. doi:10.1007/s40722-023-00307-9.
J. G. Wallwork, N. Barral, D. A. Ham, and M. D. Piggott. Anisotropic goal-oriented mesh adaptation in Firedrake. 28th International Meshing Roundtable, 2020. doi:10.5281/zenodo.3653101.
J. G. Wallwork, N. Barral, D. A. Ham, and M. D. Piggott. Goal-oriented error estimation and mesh adaptation for tracer transport modelling. Computer-Aided Design, pages 103187, 2021. doi:10.1016/j.cad.2021.103187.
J. G. Wallwork, N. Barral, S. C. Kramer, D. A. Ham, and M. D. Piggott. Goal-oriented error estimation and mesh adaptation for shallow water modelling. Springer Nature Applied Sciences, 2:1–11, 2020. doi:10.1007/s42452-020-2745-9.
J. G. Wallwork, P. Hovland, H. Zhang, and O. Marin. Computing derivatives for PETSc adjoint solvers using algorithmic differentiation. arXiv preprint, 2019. arXiv:1909.02836, doi:10.48550/arXiv.2201.02806.
J. G. Wallwork and T. Kärnä. Adjoint-based inversion and data assimilation for modelling coastal dynamics in the North Sea and Baltic Sea. HPC-Europa report, 2022.
J. G. Wallwork, M. G. Knepley, N. Barral, and M. D. Piggott. Parallel metric-based mesh adaptation in PETSc using ParMmg. 30th International Meshing Roundtable, 2022. arXiv:2201.02806, doi:10.48550/arXiv.2201.02806.
J. G. Wallwork, J. Lu, M. Zhang, and M. D. Piggott. E2N: error estimation networks for goal-oriented mesh adaptation. arXiv preprint, 2022. doi:10.48550/arXiv.2207.11233.
J. G. Wallwork, L. Mackie, S. C. Kramer, N. Barral, A. Angeloudis, and M. D. Piggott. Goal-oriented metric-based mesh adaptive tidal farm modelling. 9th International Conference on Computational Methods in Marine Engineering, 2022. doi:10.2218/marine2021.6795.
J. G. Wallwork and M. D. Piggott. Goal-oriented mesh adaptation for Firedrake. eCSE03-4 technical report, Oct 2022. URL: https://www.archer2.ac.uk/ecse/reports/ARCHER2-eCSE03-04-technical-report.pdf, doi:10.5281/zenodo.7142449.
M. Zhang, C. Wang, S. C. Kramer, J. G. Wallwork, S. Li, J. Liu, X. Chen, and M. D. Piggott. Towards universal mesh movement networks. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, 14934–14961. Curran Associates, Inc., 2024. URL: https://proceedings.neurips.cc/paper_files/paper/2024/file/1b0da24d136f46bfaee78e8da907127e-Paper-Conference.pdf.